

KERIO20 juin 2025

Qui sommes-nous?

Bureaux à Paris, Angers

& présence internationale

Que fait Dametis?

Maîtrisez votre transition énergétique et environnementale par le management de :

Visez **l'excellence énergétique** et construisez votre usine idéale

Optimisez vos usages de l'eau (Production, NEP, STEP, ...) et réduisez votre consommation

Produisez mieux avec moins grâce à la réduction des pertes matières

Que fait Dametis?

EMS: Solution logiciel MyDametis

- Collecte,
- Modélise et compare,
- Détecte,
- Préconise

TRAVAUX CLÉ EN MAIN : conception, réalisation, financement, CPE, ...

- Récupération de chaleur fatale
- Production de chaud, froid, air comprimé
- Traitement d'eau
- Décarbonation
- Accompagnement à chaque étape!

SERVICES: Expertises techniques, audits, ISO 50001, formations, accompagnement PACTE Industrie (Ademe), ...

Qui sont nos clients?

Industrie

Impression et papeterie

Santé

Luxe

Automobile

Récupération de chaleur fatale dans les hôpitaux

Particularité des hôpitaux

Puissance de récupération de chaleur : Puissance

+ Puissance

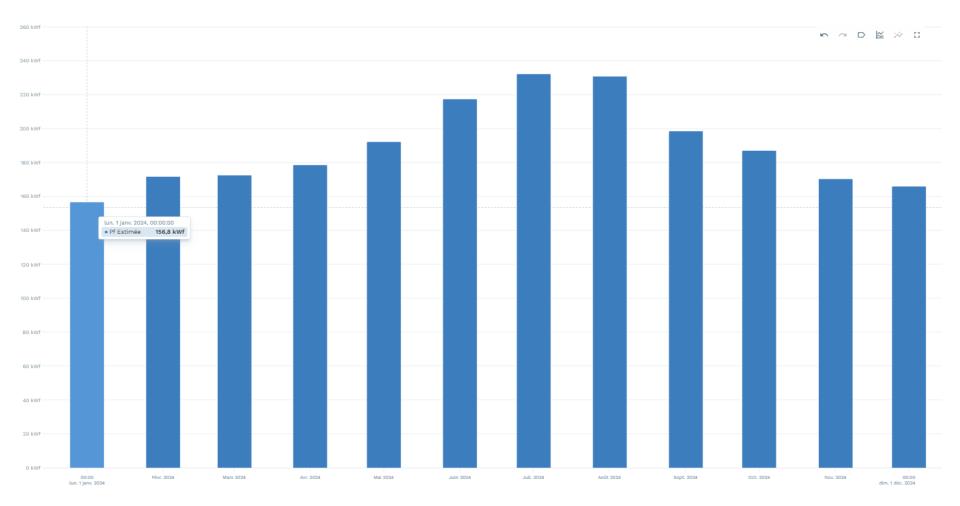
consommée

La récupération de chaleur est directement dépendante du besoin froid

Dans le **tertiaire classique**, en hiver le chauffage est important et le froid très faible → Peu de simultanéité

Et dans les hôpitaux, comment ça se passe?

- Un besoin froid + important en hiver Besoin froid constant toute l'année : Scanner, IRM, Bloc opératoire, dépendition
- Un besoin chaud + important en été Besoin chaud constant toute l'année : Bloc opératoire, déperdition, etc.



Besoins froids annuels

Hôpital Kerio

Les différents types de groupe froid

Condensation à air

- Faible durée de vie (en extérieur)
- CAPEX + faible
- Peut nécessiter un traitement acoustique
- Récupération de chaleur jusqu'à 55°C (en 7/12°C)

Condensation à eau + Aéoréfrigérents

- Durée de vie importante (en intérieur local)
- CAPEX + important
- Faible niveau de bruit
- Récupération de chaleur jusqu'à 75°C (en 7/12°C)

Contraintes de récupération de chaleur sur groupe froid

Niveau de température

En récupération de chaleur

- COP froid à 75° C = 1,5
- COP froid à 50° C = 2,7

Hors récupération de chaleur

• COP froid à 30/35°C = 4,8

Le coût de la récupération de chaleur dépend directement du prix de l'électricité.

Plus le régime de température est élevé en récupération et plus le coût est important.

Contraintes de récupération de chaleur sur groupe froid

Dans les hôpitaux...

Majoritairement le chauffage se fait par chaudière à gaz - Régime de Température 80/60° (voire 95/70°C)

Suivant le régime de température, une PAC en relève de température peut être nécessaire

Objectif : Diminuer le régime de température

- Meilleure régulation (diminution de la température de départ, loi d'eau, débit variable, etc.)
- Remplacement des CTAs, échangeurs, etc. → Dimensionnement des régimes plus faibles (60/35°C κerio)

Comparatif des sources d'énergie

	Récup Chaleur 50°C	Récup Chaleur 75°C	Chaudière Biomasse	Réseau de chaleur	Chaudière Gaz
Coût Energétique [€TTC / MWh Th]	16.6€	38.5€	50.0€	80.0€	107.5€
Impact Carbone [kg CO2 / MWh Th]	2.6 kgCO2	6.0 kgCO2	22 kgCO2	-	290 kgCO2

Prix du gaz	90	€TTC / MWh PCS	
Prix de l'électricité	140	€TTC / MWh Elec	
Prix de la biomasse*	50	€TTC / MWh Th	
Prix réseau de chaleur	80	€TTC / MWh Th	
Impact Carbone Gaz France	0.243	TCO2/MWh PCS	Base Carbone ADEME
Impact Carbone Elec France	0.0217	TCO2/MWh Elec	RTE-Bilan 2024
Impact Carbone Biomasse France	0.02	TCO2/MWh Brut	
*hors coût financier CAPEX			
COP Froid - hors récup (30/35°C)	4.8	[-]	
COP Froid - récup (50/40°C)	27	[-]	
COP Froid - récup (75/65°C)	1.5	[-]	

* : la récupération de chaleur doit être combinée à une autre source d'énergie car elle dépend du besoin froid et chaud instantanée

*: Prix biomasse: hors coût financier lié au CAPEX initial

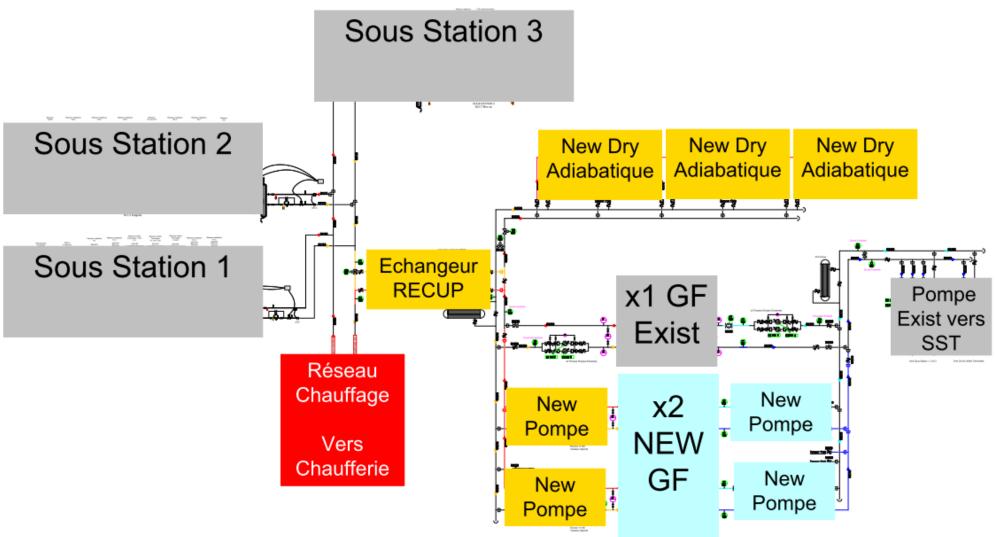
Projet du Centre Hospitalier de Kerio

Quelques chiffres sur KERIO

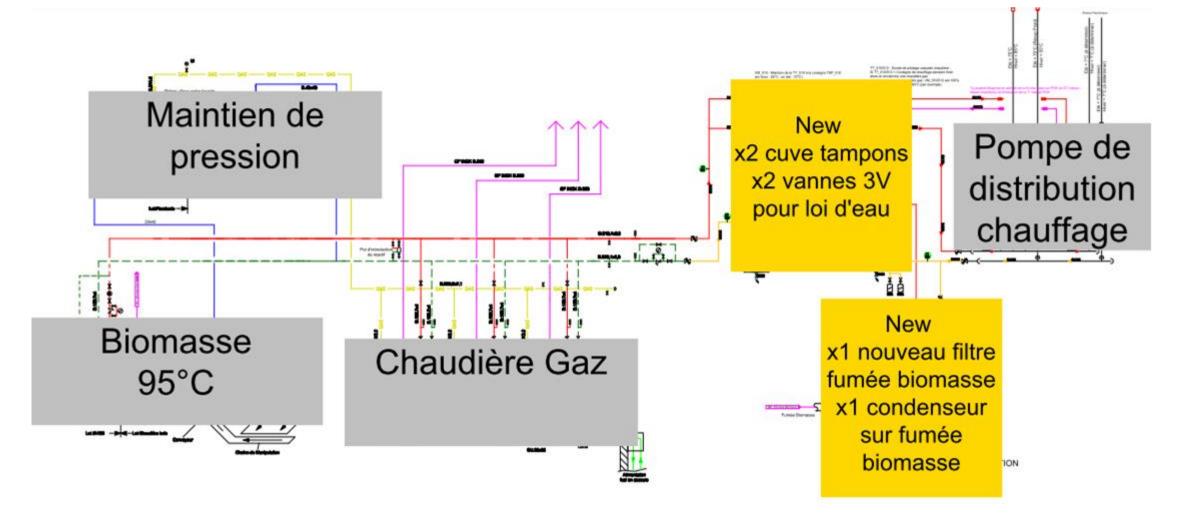
Installation frigorifique

- Puissance froid en pointe : 800 kWf
- Besoin froid estimé : 1,7 GWh Froid

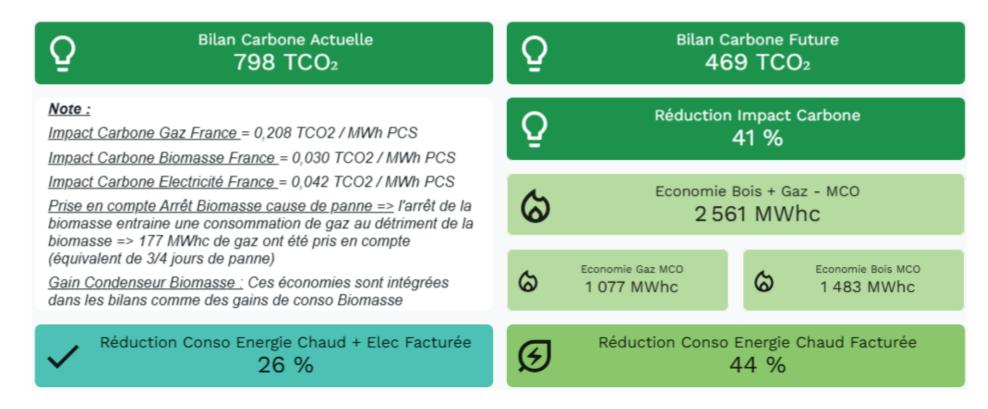
Chaufferie


- Partagée avec la polyclinique
- X1 Biomasse : 1 500 kWc
- X3 Chaudières à gaz : 3x 1300 kWc
- Besoin chaud mesuré: 7 GWh Th

- 400 lits
- 43 000m²



PID Simplifié: Froid + Récupération


PID Simplifié : Chaufferie

Autres travaux : réfection d'une partie de la GTC

Bilan énergétique après projet

- Surconsommation électrique : 8,5% en plus (via récupération de chaleur)
- Suivi par un ingénieur Dametis 10 ans pour maintien et optimisation de la performance
- Un engagement sur la performance

Le projet Logipole

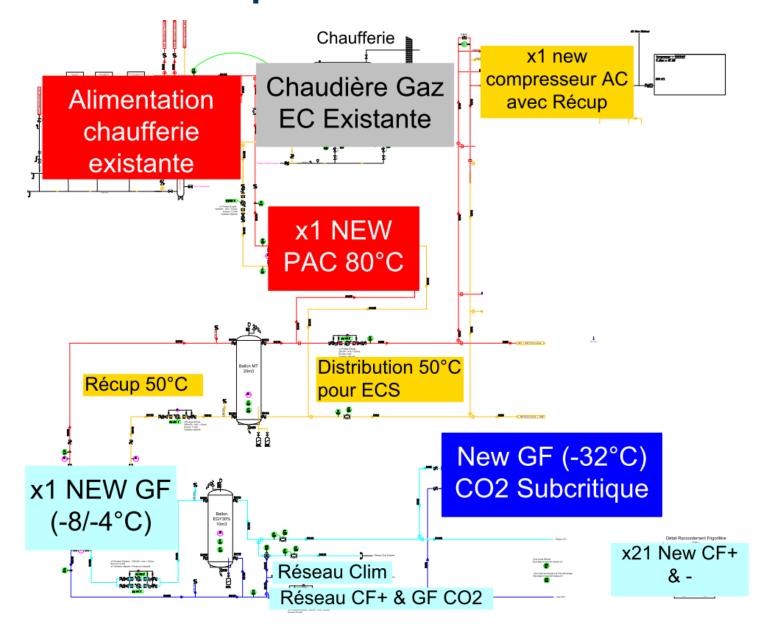
Quelques chiffres sur LOGIPOLE

Chaufferie

- X2 Chaudières à vapeur gaz : 2x 1 T/h
- X2 Chaudières gaz : 2x 895 kWc
- Sécheur de linge au gaz

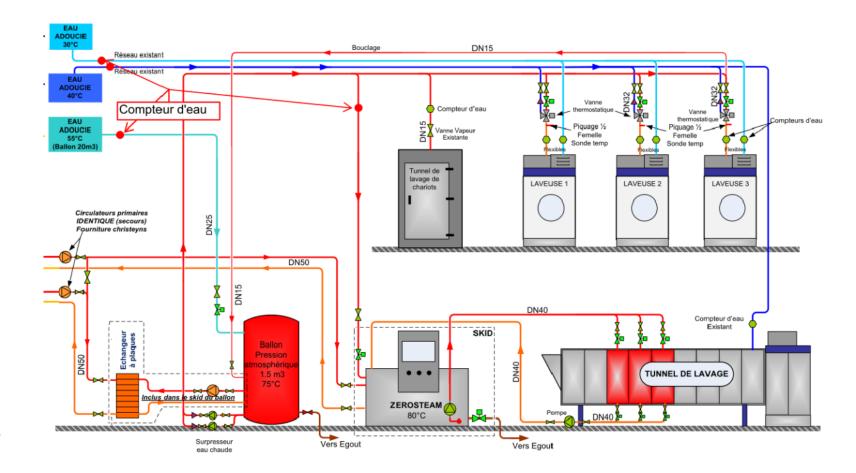
Installation frigorifique

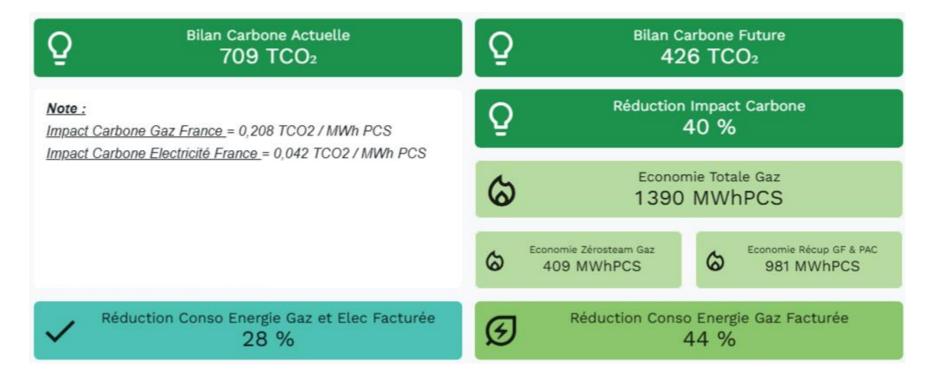
- Climatisation blanchisserie: 330 kWf (7/12°C)
- Chambres froides positives : 110 kWf (-8/-4°C)
- Chambres froides négatives : 35 kWf (-32°C)
- Cellule de refroidissement rapide : 90 kWf (-32°C)


Cuisine: 4 000 repas/jour; 1,1 million/ an

Blanchisserie: 5 tonnes/jour; 1 300 tonnes/an

PID Simplifié: Froid + Récupération 50°C


+ PAC 80°C


Lot ZéroSteam

- Suppression de la vapeur sur la blanchisserie → gain d'énergie important (rendement total vapeur 70/75%)
- Alimentation ZéroSteam avec la récupération + nouvelle pompe à chaleur + chaudière gaz

Bilan énergétique après projet

- Surconsommation électrique : 12,5% en plus (via récupération de chaleur + PAC)
- Suivi par un ingénieur Dametis 10 ans pour maintien et optimisation de la performance
- Un engagement sur la performance

